首页> 外文OA文献 >Solvation dynamics of surface-trapped electrons at NH3 and D2O crystallites adsorbed on metals: from femtosecond to minute timescales
【2h】

Solvation dynamics of surface-trapped electrons at NH3 and D2O crystallites adsorbed on metals: from femtosecond to minute timescales

机译:吸附在金属上的NH3和D2O微晶表面捕获电子的溶剂化动力学:从飞秒到分钟的时间尺度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The creation and stabilization of localized, low-energy electrons is investigated in polar molecular environments. We create such excess electrons in excited states in ice and ammonia crystallites adsorbed on metal surfaces and observe their relaxation in real time using time-resolved photoelectron spectroscopy. The observed dynamics proceed up to minute timescales and are therefore slowed down considerably compared to ultrafast excited state relaxation in front of metal surfaces, which proceeds typically on femto- or picosecond time scales. It is the highly efficient wave function constriction of the electrons from the metal that ultimately enables the investigation of the relaxation dynamics over a large range of timescales (up to 17 orders of magnitude). Therefore, it gives novel insight into the solvated electron ground state formation at interfaces. As these long-lived electrons are observed for both, D2O and NH3 crystallites, they appear to be of general character for polar molecule–metal interfaces. Their time- and temperature-dependent relaxation is analyzed for both, crystalline ice and ammonia, and compared using an empirical model that yields insight into the fundamental solvation processes of the respective solvent.
机译:在极性分子环境中研究了局部低能电子的产生和稳定性。我们在吸附在金属表面的冰和氨微晶中以激发态生成此类过量电子,并使用时间分辨光电子能谱实时观察其弛豫。与在金属表面前的超快激发态弛豫相比,所观察到的动力学过程一直持续到微小的时标,因此大大降低了速度,后者通常以飞秒或皮秒的时标进行。来自金属的电子的高效波函数收缩最终使人们能够研究大范围时间尺度(高达17个数量级)中的弛豫动力学。因此,它为界面上溶剂化电子基态的形成提供了新颖的见解。在D2O和NH3晶体中都观察到这些长寿命电子时,它们似乎具有极性分子-金属界面的一般特征。他们分析了随时间和温度而变化的弛豫,以分析冰和氨,并使用经验模型进行比较,该模型可洞悉各个溶剂的基本溶剂化过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号